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used in this sense to decompose the maximum memory working space required without alfecting the 
results. 

NUMERICAL MODELING OF ELECTROMAGNETIC CASTING PROCESSES. 0. Besson, J. Bourgeois, P.-A. Chevalier, 
J. Rappaz, and R. Touzani, Ecole Polytechnique FidPrale, Lausanne, SWITZERLAND. 

The main goal of this paper is to present a numerical model describing the major physical phenomena 
involved in electromagnetic casting industrial processes as precisely as possible. Under suitable physical 
assumptions, we derive the set of equations in the two-dimensional case; we describe in detail the 
numerical methods used to solve such equations and derive an iterative algorithm. Numerical results 
describing the case of an aluminium ingot are presented in order to show the efficiency of the method. 

AN IMPROVEMENT OF FRACTIONAL-STEP METHOVS FOR THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS. 
Hung Le and Parviz Moin, Stanford University, Stanford, California, USA. 

A numerical method for computing three-dimensional, unsteady incompressible flows is presented. 
The method is a predictor<orrector technique combined with a fractional step method. Each time step 
is advanced in three sub-steps. The novel feature of the present scheme is that the Poisson equation for 
the pressure is solved only at the final sub-step resulting in substantial savings in computing time. It is 
shown that the method allows a larger CFL number and reduces the computing cost without loss of 
accuracy by satisfying the continuity equation only at the last sub-step. Numerical solutions for the 
decaying vortices and flow over a backward-facing step are obtained and compared with analytical and 
other numerical results. 

NUMERICALLY INDUCED STOCHASTICITY. Alex Friedman, Lawrence Livermore National Laboratory, 
Lioermore, Calqornia, USA ; Steven P. Auerbach, Science Applirations International Corp., 
Emeryville, Cakfornia, USA. 

The true motion of a particle in a one-dimensional potential well is regular, since conservation of 
energy constrains the velocity u at each value of the coordinate x. Nonetheless, when the orbit is 
computed numerically, stochastic behavior can result. We have considered simple integrators as 
mappings from (.Y, u) at one discrete time level to (x, u) at the next. In general, when the timestep size 
d is small enough, there are closed orbits, while for larger values there is chaos. Chaos can result for 
surprisingly small values of d in cases where the physical phase plane includes a separatrix. The behavior 
of the leapfrog mover as applied to motion in a particular double-well potential is examined in detail. 
Here, the onset of stochasticity occurs at step sizes much smaller than the stability threshold associated 
with the harmonic dependence of the potential at large 1x1. Other one-dimensional wells and movers are 
also treated; implications of the area-preserving and energy conserving attributes possessed by some 
movers are discussed. A new variant of the standard map, displaying symmetry about both x=0 and 
o=O in its phase plane, is introduced. 

LONG-TIME BEHAVIOR OF NUMERICALLY COMPUTED ORBITS: SMALL AND INTERMEDIATE TIMESTEP 
ANALYSIS OF ONE-DIMENSIONAL SYSTEMS. Steven P. Auerbach, Science Applications International 
Corporation, Emeryville, California, USA ; Alex Friedman, Lawrence Livermore National 
Laboratory, Livermore, California, USA. 

The long-time behavior of numerically computed orbits in one-dimensional systems is studied by 
deriving a continuous-time “pseudo-dynamics” equivalent to the discrete-time numerical dynamics. The 
derivation applies to any numerical algorithm which conserves phase-space volume. A conservation law 
of the continuous-time system (conservation of the “pseudo-Hamiltonian”) guarantees that the numerical 
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orbits are close to the exact orbits, even after an unlimited number of timesteps. The equivalence 
between the discrete-time and continuous-time dynamics holds only for sufficiently small of the timestep 
d. For intermediate values of A (sufftciently large that the conservation law does not hold, but 
sufftciently small that the numerical orbits are not chaotic) a new “super-adiabatic” invariant ,4 is 
derived, and it is shown that conservation of A forces the numerical orbits to lie on smooth closed 
curves. If the potential energy varies rapidly over a small region, it is shown that very high-order 
resonances between the timestep and the orbital period T, (i.e., T/A = n, where n is a large integer) 
produce large deviations of these closed curves from the exact orbit. Such resonances also cause extreme 
sensitivity of the numerical orbit to the timestep. 

BOUNDARY ELEMENT SOLUTION OF HEAT CONVECTION-DIFFUSION PROBLEMS. B. Q. Li, Massachusetts 
Institute of Technology, Cambridge, Massachusetts, USA ; .I. W. Evans, University of California, 
Berkeley, California, USA. 

A boundary element method is described in detail for the solution of two-dimensional steady-state 
convective heat diffusion problems in homogeneous and isotropic media with both linear and nonlinear 
boundary conditions. Through an exponential variable transformation, the introduction of fundamental 
solutions and the use of Green’s theorem, the problem is reduced to one involving values of temperature 
and/or heat flux in the form of an integral only along the boundary. The integral is solved numerically 
for three examples. Two of them have linear boundary conditions and their numerical results are 
compared with the corresponding analytical solutions. The other has a nonlinear boundary condition 
due to heat radiation and an iterative procedure is applied to obtain the numerical solution. The 
fictitious source formulation leading to the boundary element solution of the same problems is discussed 
as an alternative. The extension of the method to formulate transient and/or three-dimensional convective 
heat diffusion problems is also described, and the relevant fundamental solutions are given. Finally, the 
exponential variable transformation is applied to construct a functional of variational principle which 
leads to developing a finite element formulation of the problems with a banded, symmetric stiffness 
matrix. 

CLOSED FORM SOLUTION FOR LOCALIZED MODES ON A POLYMER CHAIN WITH A DEFECT. V. K. Saxena, 
Universidade Federal de Santa Catarina, Florianopolis, SC, BRAZIL; L. L. Van Zandt and 
W. K. Schroll, Purdue University, West Lafayette, Indiana, USA. 

The problem of localized vibration modes on a polymer chain with a symmetry breaking defect is 
formulated as a finite sum of exponentially decaying waves on the polymer. Applying a set of similarity 
and unitary transformations, and using the singular value decomposition technique, the size of the 
problem is reduced to relatively small dimensions as compared to the large size of the original set of 
equations for propagating modes on the chain. A modification of the polynomial eigenvalue problem 
converts the algebraic system to a simple eigenvalue problem which may be diagonalized to give eigen- 
vectors of different decaying waves for an expansion set to describe general localized excitations. 
Application of proper boundary conditions at the site of broken symmetry leads to determination of the 
frequencies of the localized modes and corresponding eigenvector expansion. Possible applications of the 
algorithm to various defect problems on a polymer chain are discussed and some preliminary results on 
a particular defect are presented. 

RUNGE-KUTTA SM~~THEYR FOR SUPPRESSION OF COMPUTATIONAL-MODE INSTABILITY OF LEAP FR~C 
SCHEME. Akira Aoyagi, Kyushu Industrial University, Fukuoka, JAPAN; Kanji Abe, The University 
of Tokyo, Tokyo, JAPAN. 

The Runge-Kutta smoother is applied to suppress nonlinear numerical instabilities in the leap-frog 
scheme for time integration of the Kortewegde Vries equation. The accuracy of integration is compared 


